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Abstract—Dielectric spectroscopy using open-ended coaxial
probes characterizes the permittivity of a material based on
its interference with a transmitted electromagnetic wave, offer-
ing many applications spanning from human health to non-
destructive testing. The permittivity is uniquely tied to the
material’s reflection coefficient, that is, the ratio between the
magnitude of the reflect wave to that of the incident wave.
Various models have been proposed to relate the permittivity
of the material to the measured reflection coefficient, but they all
suffer from a common trade off: When they favour simplicity,
they neglect higher order modes and become inaccurate. When
using full-wave analysis, they are indeterminate, computationally
intensive with no closed-form solution, and cannot be used in
real-time.

In this paper we introduce for the first time a novel full-wave,
closed-form model for the reflection coefficient of an open-ended
coaxial probe. Our novel model combines full-wave analysis with
a Taylor series expansion to reduced the forward problem to a
simple matrix inversion, significantly reducing the computational
costs of full-wave analysis, while maintaining unparalleled accu-
racy. The proposed model is validated experimentally through
200 measurements in methanol and with extended permittivity
ranges over 1800 simulations in Ansys. The average modelling
errors compared to experimental and simulation results are
0.92% and 1.5%, respectively, making this model a significant
step towards full-wave real-time spectroscopy.

Index Terms—Dielectric spectroscopy; reflection coefficient;
closed-form model; open-ended coaxial probe; full-wave model.

I. INTRODUCTION

Permittivity spectroscopy via open-ended coaxial probes
is an instrumentation technique that determines the complex
permittivity of a medium over a wide frequency band. The
concept involves passing a transverse electromagnetic (TEM)
wave through the probe to observe how the material under
test (MUT) perturbs the electromagnetic field. Due to the
impedance discontinuity at the aperture of the probe, part of
the incident wave is reflected back to the source. The ratio
of the complex amplitude of the reflected wave to that of the
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incident wave, called the reflection coefficient, is uniquely tied
to the MUT’s dielectric properties.

Accurate permittivity estimation from measurements of the
reflected wave relies on a model that can unambiguously
describe the electromagnetic field at the aperture of the coaxial
probe and infer what the properties of the MUT must have
been to perturb the incident wave and generate the reflected
wave observed back at the source. Given a particular probe’s
geometry, only certain patterns of electromagnetic field, called
modes, can exist for waves propagating inside the probe.
These modes are the solutions to the governing partial dif-
ferential wave equations derived from Maxwell’s equations.
The weighted sum of these modes must satisfy the boundary
conditions that ensure continuity of the field near the aperture
of the probe.

The simplest and arguably most prominent approach to
determine the reflection coefficient of the TEM wave (the pri-
mary reflection coefficient) models the MUT as an equivalent
lumped circuit consisting of a resistance and a capacitance in
parallel placed at the end of the probe [1]–[6]. The capacitance
and resistance of the circuit are functions of the complex
permittivity of the MUT. While simple and computationally
efficient, these models are only valid under strict conditions,
such as narrow frequency and permittivity ranges, and in
consequence have limited usefulness [7].

A more rigorous modelling approach considers how the
TEM wave propagates inside the probe as the basis to derive an
admittance model of the aperture in contact with the MUT [8]–
[12]. The underlining principle equates the electromagnetic
and radiated fields within the probe and assumes the electric
field at any point in the cross section of the line to be
proportional to the radial distance from its longitudinal axis.
An inherent limitation of this approach is that a closed-form
solution for the primary reflection coefficient does not exist
since the model requires solving for multi-variable integrations
that are simultaneously dependent on the geometry of the
probe and the MUT parameters. This makes the normalized
admittance model computationally expensive and unsuitable
for real-time applications [13], [14].
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Approximate closed-form models of the reflection coeffi-
cient involving the primary mode use Taylor expansion to free
these integrals from the MUT’s properties, allowing for faster
computation compared to the corresponding analytical solution
[15], [16]. The Taylor expansion leads to a weighted sum of
the MUT wave number raised to the power of an increasing
integer. The weight of each parameter in the expansion can
be calculated analytically or found through model fitting [17],
[18]. All these model share the same major limitation: By
treating only the TEM, higher-order modes generated at the
aperture are ignored, making them unsuitable in frequencies
where the field wavelength approaches the size of the aperture
and the effect of high order modes cannot be neglected [19].
Indeed, the reflected wave is a combination of the incident
TEM and higher order transverse magnetic (TM) modes
arising from field perturbations. Unlike the TEM, these higher
order TM modes are evanescent, i.e., they do do not propagate
back to the source and hence cannot be measured directly. A
model of the primary reflection coefficient for the purpose
of estimating the permittivity of the MUT must, therefore,
include all wave modes.

Expanding on primary mode models, full-wave methods that
account for higher order TM modes have also been proposed.
The reflection coefficient is determined by subjecting the
resulting wave equation to boundary conditions at the probe’s
aperture that ensure continuity of the electromagnetic field,
that is, the radiated wave and the TEM and TM waves inside
the coaxial cable must be the same [20], [21]. However, these
methods rely on lengthy mathematical manipulations with
multiple integrals over the properties of both the MUT and
geometric characteristics of the probe, simultaneously, while
being subjected to local singularities. Similar to primary mode
approaches, these models are indeterminate and no closed-
form solution has been found, requiring the use of an inverse
problem to infer the reflection coefficient given the permittivity
of the MUT. While solving for these integrals numerically
is feasible, the process is computationally heavy, much more
time intensive than analytical admittance models, and cannot
be used in real-time. Despite over half a century of continuous
incremental development, a full-wave, closed-form solution for
the reflection coefficient of an open-ended coaxial problem still
remains a critical open challenge in dielectric spectroscopy.

In this paper we introduce for the first time a full-wave
and closed-form model for the reflection coefficient of an
open-ended coaxial probe. Our model addresses a crucial gap
in the current state-of-the-art and is expected to eliminate
the well-known inaccuracies and limitations of single mode
models, while significantly reducing the computational costs
required in full-wave analysis. Our principle expands on past
work by combining a full-wave model with a Taylor series
expansion that reduces the forward problem to a simple
matrix inversion. Dielectric spectroscopy primarily serves to
determine material permittivity. This is achieved through the
solution of an inverse problem using methods such as Newton-
Raphson. Implementing the proposed model in this context
would substantially accelerate computation time for solving

Fig. 1. (a) Open-ended coaxial probe in contact with a MUT of permittivity
ϵs. The reflection coefficients is denoted by Rn. (b) The coaxial probe
aperture in cylindrical coordinates ρ and ϕ, with reference frame xyz at the
centre of the aperture. a and b are the inner and outer radii of the probe.

inverse problems.
The model is validated experimentally through 200 mea-

surements in methanol with a frequency ranging from 0.5 GHz
to 5 GHz, and further validated with extended permittivity
ranges over 1800 simulations in Ansys. The experimental
and simulation results show an average modelling error of
1.5% and 0.92%, respectively. This model is a crucial first
step towards implementing full-wave, real-time dielectric spec-
troscopy, which has many applications in human health.

The paper is structured as follows: Section II presents
the formulation procedure leading to the proposed model.
Section IV validates the model through experimental results
and simulation, followed by a conclusion in Section V.

II. WAVE PROPAGATION AND RADIATION IN A COAXIAL
PROBE

We begin by laying out the well-known equations describing
the propagation of both the electric and magnetic fields inside
the coaxial probe, as well as the magnetic wave radiated to
the MUT from the aperture.

The electromagnetic field inside the probe is the solution to
the Helmholtz equation. The TEM wave has an electric and a
magnetic field perpendicular to the direction of propagation,
while TM waves have perpendicular magnetic and electric
components in addition to a parallel electric field. The incident
wave consists solely of the TEM wave, while the reflected
wave is a summation of the TEM and the TM waves [9],
[22]. Assuming the probe is oriented with its longitudinal axis
along the z-axis (direction of wave propagation), as in Fig. 1,
the radial electric field Eρ can be expressed as follows:

Eρ(ρ, z) = A0

[
f0(ρ)e

−γ0z +

∞∑
n=0

Rnfn(ρ)e
γnz

]
(1)

And the azimuthal magnetic field Hϕ is:

Hϕ(ρ, z) = jωϵ0ϵcA0

[
f0(ρ)

γ0
e−γ0z−

∞∑
n=0

Rn
fn(ρ)

γn
eγnz

]
(2)

where A0 is the amplitude of the primary mode of the electric
field, fn(ρ) is the radial function of each mode n as given in
[21], in which ρ is the azimuth angle of the aperture (see
Fig. 1), and γn is the propagation factor of mode n. The



reflection coefficient of each mode is Rn. Of particular interest
is the primary reflection mode R0 (for n = 0), which is
the only measurable parameter of the reflected wave. Other
parameters are as follows: ϵ0 is the vacuum permittivity, ϵc is
the relative permittivity of dielectric inside the probe, ω is the
radial frequency, and ks is the MUT wave number. The MUT
wave number is a function of its complex permittivity ϵ∗s:

ks = ω
√
µ0ϵ0ϵ∗s, (3)

and the MUT complex relative permittivity is:

ϵ∗s = ϵs − j
σs
ωϵ0

, (4)

where ϵs and σs are the relative permittivity and conductivity
of the MUT, respectively.

The radiated magnetic field relates to the tangential electric
at the aperture via Huygens’s principle as follows [9]:

Hϕ(ρ, z) =
jk2s

2πωµ0

∫ b

a

Eρ (ρ
′) ρ′dρ′

∫ 2π

0

e−jksr

r
cosψdψdρ′

(5)
The boundary conditions must ensure that the magnetic field

inside and outside the probe are equal at the aperture. This
condition is satisfied by equating (2) and (5) at z = 0:

jωϵ0ϵcA0

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
=

jk2s
2πωµ0

∫ b

a

∫ 2π

0

Eρ (ρ
′)
e−jksr

r
cosψρ′dψdρ′

(6)

A common approach used for calculating the normalized
admittance of the coaxial probe is to replace the electric field
with its TEM mode, i.e., E(ρ) = E0/ρ [15], [23]. However,
this method sacrifices accuracy by neglecting higher-order
modes in favour of simplicity. Also, from the normalized
admittance model, a closed-form model can be achieved
by replacing the exponential function e−jksr with a Taylor
expansion, thereby making the integral independent of the
material properties and solely reliant on the probe geometry
and its dielectric permittivity [16], [17]. Although this method
is simple and rather efficient, it tends to fail when the aperture
diameter is close to operating frequency wavelength. To ad-
dress this limitation, the coefficients of the Taylor expansion
may be optimized through analytical calculations [18], or by
model fitting [17]. However, significant modelling errors still
remain since higher modes are not taken into account.

III. PROPOSED FULL-WAVE MODEL IN CLOSED-FORM

In the proposed full-wave model the electric field Eρ(ρ
′) in

(6) is replaced with its full-wave form from (1). Thus, (6) can
be rewritten as:

jωϵ0ϵcA0

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
=

jk2s
2πωµ0

∫ b

a

∫ 2π

0

A0

[
f0 (ρ

′) +

∞∑
n=0

Rnfn (ρ
′)

]
e−jksr

r
cosψρ′dψdρ′

(7)

Up to this point, the approach we have taken is that of full-
wave analytical models [20], [21]. The unknown parameter in
this equation is the reflection coefficient Rn. Various methods
have been employed to create a system of equations from (7)
to solve for Rn. These methods involve several numerical
integrals and the process is computationally intensive, the
integrals are subjected to singularities, and they must be
computed for every single measurement point. Even more time
consuming is the process of determining the permittivity of the
MUT through a resulting iterative inverse problem over the
forward model, making real-time measurements impossible.

To circumvent the need for numerically evaluating the
reflection coefficient model for each measurement, we note
that the only variable in (7) that entangles the MUT properties
is e−jksr on the right hand side of the equation. All the
remaining terms are either the known TEM or TM wave
modes, or the geometric and dielectric parameters of the probe.
To solve for Rn in (7), we begin by replacing the exponential
term with a corresponding Taylor series expansion, similarly
to TEM-only models [12], [15], [16]:

e−jksr

r
=

∞∑
p=0

(−jks)prp−1

p!
(8)

This manipulation will lead to several integrals that are solely
a function of the probe geometry. The MUT properties are
then multiplied by the result of these integrals. It follows that
after the expansion (7) changes to

jωϵ0ϵcA0

[
f0(ρ)

γ0
−

∞∑
n=0

Rn
fn(ρ)

γn

]
=

jk2s
2πωµ0

∫ b

a

∫ 2π

0

A0[
f0 (ρ

′)+

∞∑
n=0

Rnfn (ρ
′)

][ ∞∑
p=0

(−jks)prp−1

p!

]
cosψρ′dψdρ′

(9)
Both sides of the equality in (9) are functions of ρ. To

establish a system of equations to solve for Rn and eliminate
the dependency on ρ, we multiply both sides of (9) by fm(ρ)ρ
and integrate over ρ from a to b. For mode m = 0, the above
yields:

ϵc
ϵsγ0

(1−R0)

∫ b

a

f20 (ρ)ρ dρ =

1

2π

∫ b

a

∫ b

a

∫ 2π

0

[
(1 +R0)f0 (ρ

′) +

∞∑
n=1

Rnfn (ρ
′)

]
[ ∞∑
p=0

(−jks)prp−1

p!

]
f0(ρ) cosψρ

′dψ dρ′ dρ

(10)

And for m > 0, we have:

ϵc
ϵsγm

(−Rm)

∫ b

a

f20 (ρ)ρdρ =

1

2π

∫ b

a

∫ b

a

∫ 2π

0

[
(1 +R0)f0 (ρ

′) +

∞∑
n=1

Rnfn (ρ
′)

]
[ ∞∑
p=0

(−jks)prp−1

p!

]
fm(ρ)cosψρρ′dψ dρ′ dρ

(11)



Fig. 2. (a) Experimental setup used for model validation showing the vector
network analyzer with a coaxial probe placed in methanol. (b) Full-wave
simulation of an open-ended coaxial probe inside a MUT (blue cube) in Ansys.

The orthogonality of Bessel function states that:∫ b

a

fn(ρ)fm(ρ)ρdρ = 0 if n ̸= m (12)

which entails that only one integral on the left side of (10)
and (11) is not zero. Thus, these equations may be rewritten
as a double summations, i.e., for m = 0:

(1−R0)
ϵc
ϵsγ0

α0 = (1 +R0)

∞∑
p=0

(−jks)pβ00p+

∞∑
n=1

Rn

∞∑
p=0

(−jks)pβ0np
(13)

And for m > 0:

(−Rm)
ϵc
ϵsγm

αm = (1 +R0)

∞∑
p=0

(−jks)pβm0p+

∞∑
n=1

Rn

∞∑
p=0

(−jks)pβmnp

(14)

where the coefficient αm can be calculated as follows:

αm =

∫ b

a

f2m(ρ)ρdρ (15)

And for βmnp we have:

βmnp=
1

2π

∫ b

a

∫ b

a

∫ 2π

0

rp−1

p!
fn (ρ

′)fm(ρ)ρ′ρ cosψdψdρ′dρ

(16)
These equations can be expressed as a simple matrix multi-
plication:

AR = B (17)

where A and B are given in (17) and (18). In these matrices
the sums are defined from p = 0 to p→ ∞, i.e.,

∑
→

∑∞
p=0.

These limits are omitted for simplicity. Finally, R0 is simply
found as the first cell of the vector R = (A−1)B.

It is important to highlight that all coefficients in A must
be calculated only once for each probe, and unlike previously
reported models, they are independent from the properties of
the MUT. The proposed closed-form model involves a simple
matrix operation, which is inherently fast, especially with
modern CPUs and GPUs optimized for vector calculation.

IV. MODEL VALIDATION

The proposed model will first be validated experimentally,
and then through simulations with a wider range of MUT
properties. We consider a standard 50 Ω coaxial cable with
a relative permittivity of ϵc = 2.08 and inner and outer radii
of a = 0.46 mm and b = 1.5 mm, respectively. According to,
[21]exceeding five modes does not notably enhance accuracy.
This means that a total of 125 different βmnp coefficients
must be calculated in (16), and another 5 different αm must
be determined in (15). Python code has been written for
matrix calculations, utilizing the scipy.linalg library, which is
LAPACK-based, for matrix inversion of matrix A.

The experimental setup is depicted in Figure 2(a). One end
of the probe is connected to a vector network analyzer (VNA)
(model R140B from Copper Mountain) while the aperture
is submerged in pure methanol. The calibration procedure
outlined in [12] is used in this study, with water, ethanol, and
air serving as reference materials. The permittivity of the MUT
is known. The reflection coefficient is measured through the
VNA between 1 GHz and 5 GHz with intervals of 20 MHz.

Experimental results: The complex and real part of the
measured and model-estimated reflection coefficient are pre-
sented in a polar plot in Fig. 3. Notably, the model demonstrate
strong agreement with the experimental data. The average
relative error between the measurements and the model is
found to be 0.92%.

To further validate the model with a wider range of MUT
properties, simulations were conducted using Ansys HFSS
Electromagnetic Simulator. Fig. 2(b) shows the simulation
environment, where the blue cube is the MUT. Two sets
of simulations were carried out to determine the reflection
coefficient of the probe when in contact with the MUT:

1) Simulation 1: In the first set, the relative permittivity of
the MUT is swept from ϵs = 1 to ϵs = 100, and the
conductivity ranges from σs = 0 S/m to σs = 5 S/m,
with steps of 5 and 0.1 S/m respectively. This process
is repeated at 0.5 GHz, 1 GHz, and 5 GHz.

2) Simulation 2: In the second set, water, ethanol, and
methanol are simulated as the MUT with a frequency
ranging from 1 GHz to 5 GHz with steps of 20 MHz.

Simulation results: The simulation results are summarized
in Figs. 4 and 5. In Fig. 4, every point on the polar plot stems
from an unique combination of the MUT permittivity and
conductivity, while the colour of each point gives the relative
error between the model-predicted and the simulated complex



A =



∑
(−jks)pβ00p + ϵc

ϵsγ0
α0

∑
(−jks)pβ01p · · ·

∑
(−jks)pβ0Np∑

(−jks)pβ10p
∑

(−jks)pβ11p + ϵc
ϵsγ1

α1 · · ·
∑

(−jks)pβ1Np

...
...

. . .
...∑

(−jks)pβN0p

∑
(−jks)pβN1p · · ·

∑
(−jks)pβNNp +

ϵc
ϵsγN

αN


(17)

B =
[

ϵc
ϵsγ0

α0−
∑

(−jks)pβ00p −
∑

(−jks)pβ10p · · · −
∑

(−jks)pβN0p

]T
(18)

Fig. 3. Model-estimated vs measured reflection coefficient in methanol for a
frequency range of 1 GHz to 5 GHz. The relative modelling error is 0.92%.

value of the reflection coefficient. The relative error can be
defined as follows:

Error =
1

k

k∑
i=1

∣∣∣Rsim,i −Rmodel,i

Rsim,i

∣∣∣ (18)

where k is the number of points, and R0,sim and R0,model

are the primary reflection coefficient from simulation and pro-
posed model, respectively. For frequencies of 0.5 GHz and 1
GHz the maximum error is less than 1%. At 5 GHz the largest
error is around 2.5%, happening when σs = 5S/m. Overall,
the error increases as the simulated reflection coefficient gets
close to zero. The average error for all three frequencies re-
mains below 1%. When only the primary reflection coefficient
mode is used, the error raises to 10% [17].

In Fig. 5, for the second simulation set, every point on
the polar plot corresponds to a particular frequency and the
colour of each point indicates the modelling error. A maximum
error of 1.46%, 0.2% and 0.63% were observed for water,
ethanol and methanol respectively. Both the experimental and
simulated model validation results indicate that the model is
accurate. It is worth noting that the error is particularly low in
water, which suggests that the proposed model can work well
in biological tissue, since it has a similar permittivity to that
of water.

V. CONCLUSION

This paper introduced the first full-wave closed-form model
for the reflection coefficient of an open-ended coaxial probe,

marking a significant departure from existing modelling ap-
proaches. Previous models often face a trade-off between
accuracy and simplicity. While some focus solely on the
primary mode within the probe, they sacrifice accuracy by ne-
glecting the effects of higher-order mode. Existing modelling
approaches employing full wave methods involve complex and
lengthy numerical manipulations that must be carried out for
each measurement, resulting in a time-consuming process that
is exacerbated by singularities present in numerical integrals.

Our proposed model circumvents all of these limitations
at once. By presenting the forward model as simple matrix
inversion, whose coefficients are independent of the MUT
properties, the inverted matrix only needs to be determined
once for a given probe geometry, eliminating the need for
repetitive numerical integration. Our method does not only pre-
serves the accuracy of full-wave but it also allows for efficient
vectorized calculations, accelerating the solution of inverse
problems where the permittivity of the tissue is extracted from
the reflection coefficient. Moreover, the model may be used in
real-time measurements - a crucial advancement particularly in
applications such as biomedical research, where spectroscopy
may provide real-time tissue identification.

In summary, the presented full-wave, closed-form model
represents a harmonious fusion of accuracy and efficiency,
overcoming the limitations of prior approaches. By offering
both accuracy and speed, this model may pave the way
for enhanced measurement capabilities in applications where
precise and real-time data acquisition is crucial.
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